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PHASE PLUG MODELLING AND ANALYSIS:
RADIAL VS, CIRCUMFERENTIAL TYPES

by Clifford A. Henricksen

Altec Corporation; Anaheim, California

ABSTRACT

Mechanical modelling of a simple two-dimensional phase plug-

and diaphragm yields an electrical-mobility equivalent circuit;

a two-pole low-pass filter. At higher frequencies, this analysis
becomes incomplete, and a model presented by Merhaut (1975) is
used. These impedance models are then applied as differential
elements to a radial-slit phase plug! geometry and its aggregate
impedance is found. Actual and theoretical comparative per-
formance is presented.

INTRODUCTION

My introduction to the analysis of phase plug performance was
initiated by reviewing the "...High Frequency Receiving Unit"
portion of Loudspeakers and Microphones by E. C. Wente and

A. L. Thuras, circa 1934, The analysis is based on equations
derived from a velocity potential function and the result is a
solution for normalized throat impedance, broken into real and
imaginary parts. This was all very elegant and mathematically
quite reasonable. What I really needed, however, was an equiva-
lent circuit representing the phase plug as an acoustic filter.
Its characteristics could then be lumped into discrete. elements
for ease of analysis and for a better understanding of how the
elements interacted with the rest of the driver. This, then,
was the goal of the analytic investigation.

ANALYSIS

Figure (1) shows a typical circumferential-slit phase plug with
path length & shown. Its surface is spherical and the mating
diaphragm sits above it at a distance "h".

Figure (1) - Circumferential-Slit Phase Plug
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Figure (2) shows a simplification of Figure (1), as presented in
Wente and Thuras' original paper.

stagnation

lon | draphragm
\reyo s‘f) ?_QD_.{ P ,97

& :

\

> penng \ \
(begimnin
of horn)

Figure (2) - Simplification of Circumferential
Phase Plug.
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If %p is too big, a high frequency cancellation is known to
occur at some frequency determined by this dimension. There-
fore, we should design the phasing plug with %p as small as
possible, necessitating a lot of air channels for passage of
high frequencies. Figure (3) is a simplification of a section
of diaphragm and throat between "stagnation" points (dotted
lines in Figure (2)) which are imaginary boundaries over which no
air flow occurs. These can be considered as rigid boundaries.
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where

%q .= throat width

Up = throat velocity

Ue = air velocity under diaphragm

Uy = velocity of air mass under diaphragm
near throat

tp = diaphragm dimension

Up = diaphragm velocity

fp = diaphragm force
diaphragm-to-phase plug spacing
diaphragm width

oy
o

The air space mnndér the diaphragm possesses compressibility as
well as inertia. As a result, a single frequency resonant
condition is possible, its vibration being parallel to the
diaphragm. Velgcity Up will differ from Uy due to compressibility.
Velocity Up will differ from Uy due to the acoustic transformer
(h/%p). Figure (4) is an equivalent mechanical circuit describing
the operation of Figure (3) and should be clear in its derivation.
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FPigure (4) - Mechanical Circuit Equivalent
of Figure (3)

An electrical impedance equivalent circuit of the diaphragm-
phase plug can now be made. Performance of this circuit will

be later compared with Wente and Thuras' results and the circuit
will be transformed to a mobility circuit for a complete driver
model, The compliance under the phase plug is found by normal
equations keepina in mind the flow direction. The mass under



the phase plug is its "equivalent" mass and is numerically one-
third of the total air mass!. This equivalent circuit is shown
in Figure (5). Compare it to Figures (3) and (4).
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Figure (5) - Phase Plug Mechanical-Impedance
Equivalent Circuit

Removing transformers by using appropriate constants yields
the following circuit shown in Figure (6):2
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Figure (6) - Transformed Phase Plug Circuit

where m, is the effective mechanical mass of the phase plug
air cavity;

L. "3‘""""’":/0083h2° = [%8 25»

P

(1)

1 see Appendix 1 for proof.

2 other resistances are present here, but are deemed insignificant.
See Appendix 2.



Cp = the effective mechanical compliance of the phase plug
air cavity;
volume .
c = ——— "8" is area normal to flow (h§)
P /(gczs?.
So
o Ao &h LS (2)

P T RCcHUnEE  ACish

Therefore, from Figure (6), the final mechanical-impedance
circuit will have the following values for R, L and C;

peself) - Aegs

R =
3

o - () = AgE “
9 3

L= cp (52 b) 7-;‘3_’1—5? )

Figure (6) should be easily recognized as a simple two-pole
low-pass circuit. Its input impedance can be solved for real
(Re) and imaginary (Im) parts as follows:

_Jwb +R
1=~ WLC +jwRa

(6)
Using standard complex algebra and defining

0Oz Ww/we= WwLe ()
K= (Qc)z R%*C

= [ (8)

We arrive at normalized equations

Re _ 1 (9)
R I+ (K-2D)N2+ N2

oK ne
Im ._._j VK Vic (10)
R4 (k-2 -1t




Using (3), (4) and (5) in (8) yields

2
K = _§_b_ or (11)

L+?

_ \(x_"
%_ 3 (12)

T

Figure (7) shows the results of Wente and Thuras, noting that
W&T's "h/w" is the same as our "h/&gp." The impedance shown
are ngrmallzed with respect to the referred horn resistance

poCAT“, which is identical to those impedances in (9) and (10).
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Figure (7) - Wente and Thuras' Results:
Diaphragm Impedance

6



Now, compare this to results obtained from our equations (9)
and (10). From equation (11), Wente and Thuras' "h/w" of 1/2,
2/3, 1 and 2 correspond to our "K" values of .75, 1.333, 3 and
12 respectively. Qur frequency scale corresponds to a greater-
than-quarter waveléngth by using

1
£ e (13)
© 21 fLe
Using (4) and (5) in (13) yields
=1
. V3'C ¢ (10)

o 2R 363

So our frequency s¢ale is shifted by a factor of 4/3.63 or a
factor of 1.102 higher. Comparing curves of our results,
shown in Figure (8), next page, we see very close agreement to
Q=1, which is where¢ the Wente and Thuras analysis stops.

At higher frequencies (Q>1) this model becomes too simple, as
the air under the diaphragm goes into a more "discrete" vibra-
tional behavior. Merhaut has taken the analysis a step further
and suggested a high-frequency model which appears in impedance
form in Figure (9). Merhaut's equivalent circuit is cleverly
derived from the f¢rm of the transfer function he derives from

the wave equation.
Mp, ¢
VN.QT'

P2
%P doih
£ Cp

Figure (%) - Merhaut High Frequency Phase Plug
Impedance Model

where
M

C

P2 is a second-order mass

P2 is a gsecond-order compliance
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Figure (9) can be simplified (transformers removed) to the cir-

cuit shown in Figure (10). » *
L5Me = Me2. ”cpf,opacp
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Figure (10) - Transformed Merhaut Equivalent
Impedance Model

Compare Figure (10) to Figure (6) and note that the only differ-
ence is the "L-C" added across the inductor representing mass.
Upon inspection of Merhaut's paper, it was (encouragingly) found
that the equivalent "first-mode" compliance and air mass for
both analyses agreed. It turned out, conveniently, that the
second~order elements could be expressed as follows:
c = ,099 15
02 099¢, (15)
= R 1
M, 1 5M, (16)

A mobility equivalent circuit for Figure (9) 1is as follows
in Figure (11):
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Eliminating transformers by ratio multiplicationlyields the
following mobility circuit shown in Figure (12).

099 Cp

Figure (12) - Transformed Equivalent of Figure (11)
and Final Mobility Phase Plug Model
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The transfer function of Figure (12) can be solved for response,
R.

Cod _ _1-241502°% 2
Cin T (R Y2415 00)¢ |~ 1247500+ 14850
where the variablesﬁ\_and K are as per equations (7) and (8).

Equation (20) is plotted tofl=3 in Figure (14). Compare it to
Figure (8).

0)

These models and the next higher order circuit suggested by
Merhaut were all examined analytically. Except for a small
depth-of-notch, the higher order models are identical to Q=3.
The performance of the simple two-pole low-pass and Merhaut's
model in Figure (10) are identical to Q=1.
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As a final model of the entire driver, Figure
to a standard high frequency driver mobility model.

shown in Figure (15}, P T e e — — =

Rve

where

Lve.

Le

Figure

(12) can be added
This

is
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(15) - Complete Driver Model Including
Circumferential Phase Plug
voice coil resistance
voice coil inductance
capacitor representing total
diaphragm mass = MT/(BJL)2 (21)
inductor representing suspension
compliance = B28%cqy (22)
back diaphragm radiation resistance
= (B!L)Z/poCSD (23)
capacitor representing phase plug mass '
= poSye,*/3(BR)%h (24)
inductor representing phase plug
compliance = (Bz)zh/pocst (25)
horn radiation resistance =
(BL)ZsT/pocsg (26)

RADIAL-SLIT PHASE PLUG

Figure

2p being indicated.

(16) on the next page shows a radial phase plug, maximum

The radial slit configuration differs from the circumferential
decrease toward the center. The effect of

spacing between the diaphragm and phase plug is the same for

type by having QD

both types of phase plugs;

12

this results from the air reactance



Figure (16) - Radial Phase Plug

(compliance) shown as L, in the mobility circuit and is found
by equation (25). Note that it is independent of &p. Hence,
the only difference between radial and circumferential types
should be the "effective" air mass Cp; if & was zero, Cp would
be zero and the air in the phase plug would be massless.

Let's look at a radial phase plug. Figure (17) shows a small
section with a small portion of the diaphragm (dr) wide at
distance r from the center.

Figure (17) - Radial Phase Plug Close-up

Clearly, arc &p varies from zero to ip, at the 0.D., according
to the relationship.

b = Qomr=£DmP (27)
£
where 'P= r‘/rD (28)

13



arc QDm or max KD is

, 2T _ T
N

Dm 2N

where N is the number of slits.

Also, for this example, the slits are tapered, having a maximum
width of (2£T ) at the periphery. Therefore, similar to (29)

LT = QTMP = /QTMP (30)

In this stage of the analysis, we should note that for the inner
portions of the diaphragm, the resonant frequency is high, but
since the relative damping is constant, the "Q" of these sections
is low. The outer sections would be higher "Q" but resonate at
lower frequency. The net result will be an aggregate of all
these impedances. The plan will be to find a "bulk" or lumped-
parameter mechanical model which describes the behavior of this
device.

Our typical differential diaphragm segment can be represented

by Figure (12). Since different acoustic powers will be generated
in each of the differential elements, a summation of all these
powers should give the total power response. The transfer func-
tion for any differential element is given by equation (20).
Since the normalized frequency, @, varies with dimension &p,

let us say that @ will be determined by % max, as in equation
(14). Therefore, local Q will be QP, per equation (27). Also,
local "K", per equation (11) will become KP2?. Then, per equa-
tion (20), the transfer function of our differential element
will become

Fz = Giadf_" 1 -,Zﬂ'ﬂ55121>2. (1)
radl T e %{n-,za,;snwl)ﬂ—),24755?.‘P‘+. 4g50°P9

A normalized power response, W, is found as follows;

Zaﬂ lora&:pows 2 Clua\ / Rloca\

(32)
W= Rssymptotic powec ot €10 / Ryos
from (3), inverting for mobility,
R, .= Lrm (33)
local =

14



and RM - ZQTM

= Q‘i“'“‘“ (34)
°! /%C- bwm (D
therefore, from (32), (33) and (34)
S (Crocel 2 Raotol Z\(ew )"‘
\A)" Z(?‘-v\ R\oca\ = €. (2PC\P> (35)

from (31), therefore,

2

PaP e

N I 2
1-.24750 P
W 2?;. [ (- 24750009+ 11,2475 2P+ 1485204
= (3

Equation (36) was solved by dividing the normalized radius into
100 parts, therefore N=100, AP=.0l1 and P=N(.01). This was @one
on a computer and solved as a 10 log function for response in
dB. The results are in Figure (18)on the next page.

COMPARISON OF THEORETICAL PERFORMANCE

We can show that for the same throat area (hence resistance)

and the same maximum path length, the maximum throat width will
be the same.l! A real-life circumferential-plug driver has an

tp of about 1/4" whichiplaces Q=1 at 13.4 kHz, per equation (14).
For the same driver diaphragm spacing, h, and slit area, we
would like to compare the performance of just the phase plug to
a substitute radial design. Both would operate at &p/fp =

(.70). From Figures (14) and (18) we can evaluate the relative
performance of the two phase plugs. This is shown in Figure
{19). At once we can see the theoretical difference between

the two phase plug types. The first is that the radial is a
much "lower Q" kind of filter with a more gradual roll-off and
without a severe notch at the high end. Theoretically we would
expect a 5 dB gain at 20 kHz and a 1.2 dB loss around 9.4 kHz
due to the radial's lack of "bump" at these frequencies. The
lack of a discrete notch can be seen at all spacings "h" when
comparing Figures (14) and (18). This is attributed to the
"distributed" nature of the radial flow path, as opposed to
the "discrete" single-path behavior of the circumferential;

the radial plug has an infinite variety of flow path lengths
and the circumferential has only one. Of interest is constant-~
width radial slits. Analysis of this configuration would be
quite difficult, but it lends itself better to manufacture.

In practice, it has been observed that for the same 2p max

and total throat area, tapered-slit and straight-slit radial
phase plugs exhibit identical behavior.

1 5ee Appendix (3)
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Normalized Response of Radial-Slit
16

Phase Plug

Figure (18)
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Figure (19) - Theoretical Comparative Responses of
Radial and Circumferential Designs

COMPARISON OF REAL PERFORMANCE

A radial phase plug, as discussed in the previous paragraph,
was designed to replace an existing circumferential design.
Increased performance is always desirable, but if it were
identical in performance, it would be much more attractive,
since it could be single-piece injection molded. The current
circumferential design is very expensive to manufacture. The
two designs employed a 1.75" diaphragm-and-voice coil. Tests

17



were performed on a typical exponential horn.

response of the radial driver was equalized as
(Altec 1620 1/3-octave equalizer) and then the circumferential
unit was substituted, using the same diaphragm and E.Q
Care was taken to keep diaphragm spacing, "h",

The on-axis

the same. Also,

flat as possible

settings.

magnetic assemblies were selected for identical gap flux so that

only phase plug performance could be evaluated.

These curves
are shown in Figure (20).
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Figure (20) - Actual Response of Drivers
(both with same E.Q.)

DISCUSSION

Actual performance is somewhat close to predicted, with a
final gain of about 8 dB at 20 kHz and something like a 1 dB
loss in the high mid-region (6-7 kHz). It seems as if the
entire analysis would be closer if it were lower in frequency,
i.e., ©@=1 would occur at a lower frequency theoretically. This
means a shift of frequency by a factor of 1.2 lower. Also not
taken into consideration is the way the geometry of the phase
plug affects the breakup modes of the diaphragm The radial
phase plug shown was designed to have a prime number of slits
(11) and, depending on the position of modes in the dlaphragm
relative to the phase plug slits, flow may be affected in dif-

ferent ways. Obviously, an inclusion of this into the analysis
would be very difficult!

CONCLUSION

A phasing plug in a high frequency compression driver is modeled
as a two-pole low-pass filter, its resonant frequency being
determined by the mass and compliance of the air between the
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diaphragm and the phase plug. This model seems to be accurate
up to its resonant frequency. Above this, a model suggested
by Merhaut is used, which includes the higher-mode vibration
behavior of the phase plug air, and its frequency range seems
accurate to three times the first-mode resonance. This model
is used as a differential element for analysis of a radial-
slit phase plug, which is shown to be a relatively lower-Q
filter. Due to its "distributed" multi-path length geometry,
the radial phase plug exhibits a much smoother "spread-out"
response compared to a "conventional" circumferential design,
which is shown to notch very severely, due to its single-path
geometry. For these reasons, however, a lumped-parameter model
for the radial design seems unattainable since its performance
is infinitely variable. This seems to make the radial design
more well-suited for extended~range response. Lastly, because
of its one-price castability, the radial design has a further
advantage in its ease and economy of manufacturability.

The Author wishes to thank Dr. Richard Small, Prof. Dean Karnopp
(U. C. Davis), John Gilliom (Spider), Jerry Siciliano (Altec)
and Mark Ureda (Altec) for their contributions to this work.
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Appendix (1)

A distributed spring-mass system in vibration can be modelled
as a discrete system by reasoning applied to the following
figures:

V(Y)= Ve Viex
@ya 4 4

Vi)

Y Viy)
Viy) }
Viwax

V(‘))‘dhu
e ‘3: L

p -

WS NSNS
Sre

rrrer7i V(")

(a) Cantilever Spring (b) Linear Vibration

Vmax

o |

(c) Discrete Equivalent

Figure (21) - Distributed & Discrete Vibrating Systems

Both figures (a) and (b) have a linear velocity gradient with
Y,V (y). BEach cross-section has an area (normal to "y")
whose value is "A" and a thickness dy. The material in each
has a mass density p. The spring constant (or rate) of both,
when forced in the direction of vibration is discrete; the
mass is not, and the effective mass is found as a percentage
of the total mass--by its contribution to the total kinetic
energy of the unit. This is found by integrating the kinetic
energies of all dy section.
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Appendix (1) Contd.

Y
Vy) = Vg T (37)
2 2 L v? y?2
KE = S AKE =§ 3 vian = % S —max _ oagy (38)
o o o 22
1 Al 1
KE = 2 Vx' 3 =3 Mo Vi’ 39)
Where Me is the effective mass. Since the total
mass, MT' is:
M, = pAL o)

T

Tt takes no great mathematical wizard to conclude
that;

Me =1/3 MT

21



Appendix (2)

Taken directly from Beranek;

4

t

[PU—
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travel of
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ket

Figure (22) - Slit Resistance from Beranek

Beranek's equation (5.52) can be related to Figure (22);

Beranek's "t" = our "h"
Beranek's "w" = our "§"
Beranek's "&" = our "QD“
n = 1.86 x 10"°nt/m*-sec

in which case our equation becomes;

12n ZDB ) .
RP = 5 mechanical MKS ohms (41)
Taking into account the (RD/h) acoustic transformer and
that this resistance is, in mobility, in common (thus in
parallel) with the phase plug mass and compliance volume
flow, we arrive at the following mobility electrical

phase plug resistance;

(82)*h* _ (B2)? h?®
3 2
12n2p%6  12ng%sy

R

o ohms (a2)

This resistance appears as viscous drag along the sides of the
air channel (between phaseplug and diaphragm) and "looks like"
a mobility resistor from U’ to ground. On a typical 8%, high
efficiency driver, this cafculates to about 2600 and is judged

insignificant relative to Ry which is about 8@.
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Appendix (3)
Proof: For equal %p's and total slit area, the maximum slit
width for circumferential and radial phase plugs are identical.

inalysis: Fidure (19) shows radial and circumferential phase
plugs, where N is the number of channels and A is total area.

4_:’. zm_ﬂbwc"-?ﬂ(—aob)wc_’f cree

Bshbsy A=211 (99p)We
4slttsy A =20 C1628)ue for N shiks

Figure (23) - Radial and Circumferential
Phase Plugs .

-~
AQ-’-NR (_“_).Ezﬁ.) (43) F\Q_:Zﬁ chk)c v (45)

Q 2ZM(e _ Mo Q Yo
" 2NR N e, be 2 Ne (46)

F}C_z'Tr’ch\UE.{b (47)

for equal ZD'S and areas,

- v 'rr rD = rb ] - N
QDﬂ‘QDC L N& ZNQ ’a N@‘zjr < (48)
Ar=Ac ., E-%’-R—C" = TNeWe lNo (49)

using (48) and (49) W= W
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