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PHASE PLUG MODELLING AND ANALYSIS:

RADIAL VS. CIRCUMFERENTIAL TYPES

by Clifford A. Henricksen

Altec Corporation; Anaheim, California

ABSTRACT

Mechanical modelling of a simple two-dimensional phase plug-

and diaphragm yields an electrical-mobility equivalent circuit;

a two-pole low-pass filter. At higher frequencies, this analysis

becomes incomplete, and a model presented by Merhaut (1975) is

used. These impedance models are then applied as differential

elements to a radial-slit phase plug ! geometry and its aggregate

impedance is found. Actual and theoretical comparative per-

formance is presented.

INTRODUCTION

My introduction to the analysis of phase plug performance was

initiated by reviewing the "...High Frequency Receiving Unit"

portion of Loudspeakers and Microphones by E. C. Wente and

A. L. Thuras, circa 1934. The analysis is based on equations

derived from a velocity potential function and the result is a

solution for normalized throat impedance, broken into real and

imaginary parts. This was all very elegant and mathematically

quite reasonable. What I reall_ needed, however, was an equiva-

lent circuit representing th e phase plug as an acoustic filter.

Its characteristics could then be lumped into discreteelements

for ease of analysis and for a better understanding of how the

elements interacted with the rest of the driver. This, then,

was the goal of the analytic investigation.

ANALYSIS

Figure (1) shows a typical circumferential-slit phase plug with

path length _D shown. Its surface is spherical and the mating
diaphragm sits above it at a distance "h".

Figure (1) - Circumferential-Slit Phase Plug

1U.S. Patent %4050541, foreign patents pending
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Figure (2) shows a simplification of Figure 1), as presented in
Wente and Thuras' original paper.

Figure (2) - Simplification of Circumferential
Phase Plug.

If ZD is too big, a high frequency cancellation is known to
occur at some frequency determined by this dimension. There-
fore, we should design the phasing plug with _D as small as
possible, necessitating a lot of air channels for passage of
high frequencies. Figure (3) is a simplification of a section
of diaphragm and throat between "stagnation" points (dotted
lines in Figure (2)) which are imaginary boundaries over which no
air flow occurs. These can be considered as rigid boundaries.

Figure (3) - Simplified Phase Plug
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where

ZT = throat width

UT = throat velocity

UC = air velocity under diaphragm

U_ = velocity of air mass under diaphragm
near throat

kD = diaphragm dimension

UD = diaphragm velocity

fD = diaphragm force

h = diaphragm-to-phase plug spacing

= diaphragm width

The air space nnder the diaphragm possesses compressibility as

well as inertia. As a result, a single frequency resonant

condition is possible, its vibration being parallel to the

diaphragm. Velocity UC will differ from UM due to compressibility.

Velocity UT will differ from uM due to the acoustic transformer

(h/_T). Figure (4) is an equivalent mechanical circuit describing
the operation of Figure (3) and should be clear in its derivation.

' IP

Figure (4) - Mechanical Circuit Equivalent

of Figure (3)

An electrical impedance equivalent circuit of the diaphragm-

phase plug can now be made. Performance of this circuit will

be later compared with Wente and Thuras' results and the circuit

will be transformed to a mobility circuit for a complete driver

model. The compliance under the phase plug is found by normal

equations keepino in mind the flow direction. The mass under



the phase plug is its "equiyalent" mass and is numerically one-

third of the total air mass 1. This equivalent circuit is shown

in Figure (5). Compare it to Figures (3) and (4).

Figure (5) - Phase Plug Mechanical-Impedance

Equivalent Circuit

Removing transformers by using appropriate constants yields

the following circuit shown in Figure (6): 2

I

Figure (6) Transformed Phase Plug Circuit

where mp is the effective mechanical mass of the phase plug
air cavity;

! See Appendix 1 for proof.

2 Other resistances are present here, but are deemed insignificant.

See Appendix 2.
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Cp = the effective mechanical compliance of the phase plug
air cavity;

volume "S" is area normal to flow (h6)
Cp = _S z

So

c

p /%c'<h63z _c'[h

Therefore, from Figure (6), the final mechanical-impedance
circuit will have the following values for R, L and C;

._._ (3)

'_ _D (4)

=_C'$k (s)

Figure (6) should be easily recognized as a simple two-pole
low-pass circuit. Its input impedance can be solved for real
(Re) and imaginary (Im) parts as follows:

jcoL +R

Z = +--_0_C-J _< (6)I--_3_L_

Using standard complex algebra and defining

/_ - _¥w_ --coL_ <7)

LDo --- L- (8)

We arrive at normalized equations

Re !

_- _ i+(K.2,_i2._+D4 (9)

. _ (I-K) -C'L_
im __ _-_ 2 _-_ (10>
R- -J1. '_ (. K-2>.rlJ +._.4



Using (3), (4) and (5) in (8) yields

3h z
K _r (11)

h = X'_' (12)

_T

Figure (7) shows the results of Wente and Thuras, noting that

W&T's "h/w" is the same as our "h/ZT." The impedance shown

are n_rmalized with respect to the referred horn resistance
PoCAT , which is identical to those impedances in (9) and (10).

IIII1 ,,_,v/,,x_w.-_,,-!ill "_ _ _ L ! 2 [_!ZJii

"lliil I i-T!TI,t- :-:[ !!lT-_
m,'i,i ,Lt

0,I I I -F) i,q,t,_1 q I_

tlil I i liilii i l ll_

_'_lill I , i !.,: !li_

_ · j,_iH I :_I i i i_',;i ,_!::
-"I o. Iii i I I I III I i I t _il

.,., i ..j Ii!ii! ! i,
0.006 0.0i _,.,_$ 04 41. ..- A 0.5 I

_AEQU[NCYX T

Figure (7) - Wente and Thuras' Results:

Diaphragm Impedance
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Now, compare this to results obtained from our equations (9)

and (10). From equation (11), Wente and Thuras' "h/w" of 1/2,

2/3, 1 and 2 correspond to our "K" values of .75, 1.333, 3 and

12 respectively. Our frequency scale corresponds to a greater-

than-quarter wavelength by using

f = __1 (13)

o
using (4) and (5) in (13) yields

_C C
o _,&5 RD

So our frequency scale is shifted by a factor of 4/3.63 or a

factor of 1.102 highe r. Comparing curves of our results,

shown in Figure (81, next page, we see very close agreement to
Q=I, which is wher_ the Wente and Thuras analysis stops.

At higher frequencies (Q>i) this model becomes too simple, as

the air under the diaphragm goes into a more "discrete" vibra-

tional behavior. Merhaut has taken the analysis a step further

and suggested a hiqh-.frequency model which appears in impedance

form in Figure (9). Merhaut's equivalent circuit is cleverly

derived from the fQrm of the transfer function he derives from

the wave equation. _. _p_ __p_

ho_

Figure (_) Z- Merhaut High Frequency Phase Plug

Impedance Model

where

Mp2 is a second-order mass

Cp2 is a Second-order compliance



,I ._5 ,_ ,4 ,5 ._ .9 1 1.5 a

C-

Figure (8) - Normalized Mechanical Diaphragm Impedance,
derived from equations ti0) and (11), for
simple two-pole model
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Figure (9) can be simplified (transformers removed) to the cir-

cuit shown in Figure (10).

Figure (10) - Transformed Merhaut Equivalent

Impedance Model

Compare Figure (10) to Figure (6) and note that the only d_ffer-

once is the "L-C" added across the inductor representing mass.

Upon inspection of Merhaut's paper, it was (encouragingly) found

that the equivalent "first-mode" complianee and air mass for

both analyses agreed. It turned out, conveniently, that the

second-order elements could be expressed as follows:

Cp2 = .099CD (15)

Mp2 = 1.5MD (16)

A mobility equivalent circuit for Figure (9) is as follows

in Figure (11):

_ i I.o4_ _ _ _'_,



Eliminating transformers by ratio multiplicationlYields the
following mobility circuit shown in Figure (12).

Lp _i_

Figure (12) - Transformed Equivalent of Figure (11)

and Final Mobility Phase Plug Model

from (1) /9. h 5_) .J_ Sl) _0'ID_'_

cp=, S -' I__--/%sh ' (181

The transfer function of Figure (12) can be solved for response,
R.

_ _ I-.24q5 & _
= <J/_X_nz4_sn,),t.h2415n_+.t48sn, (20)

where the variables_and K are as per equations (7) and (8).

Equation (20) is plotted to_=3 in Figure (14). Compare it to

Figure (8).

1 These models and the neKt higher order circuit suggested by

Merhaut were all examined analytically. Except for a small

depth-of-notch, the higher order models are identical to Q=3.

The performance of the simple two-pole low-pass and Merhaut's

model in Figure (10) are identical to Q=i.

10



:t2

0

-2

dB -_:

· i ,% '3 ,4 ,§ .& ,1 ,9,9 I 1,5 Z0 J
fl

Figure (14) - Normalized Response of Single-Path
Phase PZug. per equation (20)
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As a final model of the entire driver, Figure (12) can be added

to a standard high frequency driver mobility model. This is

shown in Figure (15). '................ I

:Lp

Figure (15) - Complete Driver Model Including
Circumferential Phase Plug

where

RVC = voice coil resistance

LVC = voice coil inductance

C = capacitor representing total

m diaphragm mass = MT/(B_)2 (21)

LC = inductor representing suspension
compliance = B2g2c T (22)

RAB = back diaphragm radiation resistance

= (B_)2/poCS D (23)

C = capacitor representing phase plug mass

P = DOSD_D2/3(B_)2h (24)

L = inductor representing phase plug

P compliance = (Bg)2h/p0C2S D (25)

RAF = horn radiation resistance =

(Bg)2ST/pOCS _ (26)

RADIAL-SLIT PHASE PLUG

Figure (16) on the next page shows a radial phase plug, maximum

_D being indicated.

The radial slit configuration differs from the circumferential

type by having _D decrease toward the center. The effect of
spacing between the diaphragm and phase plug is the same for

both types of phase plugs; this results from the air reactance

12



Figure (16) - Radial Phase Plug

(compliance) shown as L_ in the mobility circuit and is found
by equation (25). NoteFthat it is independent of iD . Hence,
the only difference between radial and circumferential types
should be the "effective" air mass CD; if _D was zero, Cp would
be zero and the air in the phase plu_ would be massless.

Let's look at a radial phase plug. Figure (17) shows a small
section with a small portion of the diaphragm (dr) wide at
distance r from the center.

,T
Figure (17) Radial Phase Plug Close-up

Clearly, arc _D varies from zero to _'Dm at the O.D., according
to the relationship.

zD Fl>

where ?._ r/r (2a>
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arc IDm or max _D is

i _F_ frr_ (29)

Dm _N

where N is the number of slits.

Also, for this example, the slits are tapered, having a maximum

width of (2iT m) at the periphery. Therefore, similar to (29)

t7 -r>iT (30)

In this stage of the analysis, we should note that for the inner

portions of the diaphragm, the resonant frequency is high, but

since the relative damping is constant, the "Q" of these sections

is low. The outer sections would be higher "Q" but resonate at

lower frequency. The net result will be an aggregate of all

these impedances. The plan will be to find a "bulk" or lumped-

parameter mechanical model which describes the behavior of this
device.

Our typical differential diaphragm segment can be represented

by Figure (12). Since different acoustic powers will be generated

in each of the differential elements, a summation of all these

powers should give the total power response. The transfer func-

tion for any differential element is given by equation (20).

Since the normalized frequency, Q, varies with dimension _D,

let us say that _ will be determined by _D max, as in equation
(14). Therefore, local _ will be _P, per equation (27). Also,

local "K", per equation (11) will become KP 2, Then, per equa-
tion (20), the transfer function of our differential element

will become

A normalized power response, W, is found as follows;

W= (32)

from (3), inverting for mobility,

_-r_ (33)
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2
and _a% _

therefore, from (32), (33) and (34)

from (31), therefore,

" IPaP(36)
Equation (36) was solved by dividing the normalized radius into

100 parts, therefore N=100, AP=.01 and P=N(.01). This was done
on a computer and solved as a 10 log function for response in
dB. The results are in Figure (18)on the next page.

COMPARISON OF THEORETICAL PERFORMANCE

We can show that for the same throat area (hence resistance)

and the same maximum path length, the maximum throat width will

be the same. ! A real-life circumferential-plug driver has an

k D of about 1/4" whichiplaces 2=1 at 13.4 kHz, per equation (14).

For the same driver diaphragm spacing, h, and slit area, we

would like to compare the performance of just the phase plug to

a substitute radial design. Both would operate at gT/gD =

(.70). From Figures (14) and (18) we can evaluate the relative

performance of the two phase plugs. This is shown in Figure
(19). At once we can see the theoretical difference between

the two phase plug types. The first is that the radial is a

much "lower Q" kind of filter with a more gradual roll-off and

without a severe notch at the high end. Theoretically we would

expect a 5 dB gain at 20 kHz and a 1.2 dB loss around 9.4 kHz

due to the radial's lack of "bump" at these frequencies. The

lack of a discrete notch can be seen at all spacings "h" when

comparing Figures (14) and (18). This is attributed to the

"distributed" nature of the radial flow path, as opposed to

the "discrete" single-path behavior of the circumferential;

the radial plug has an infinite variety of flow path lengths

and the circumferential has only one. Of interest is constant-

width radial slits. Analysis of this configuration would be

quite difficult, but it lends itself better to manufacture.

In practice, it has been observed that for the same AD max

and total throat area, tapered-slit and straight-slit radial

phase plugs exhibit identical behavior.

1 See Appendix (3)
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Figure (19) - Theoretical Comparative Responses of
Radial and Circumferential Designs

COMPARISON OF REAL PERFORMANCE

A radial phase plug, as discussed in the previous paragraph,
was designed to replace an existing circumferential design.
Increased performance is always desirable, but if it were
identical in performance, it would be much more attractive,
since it could be single-piece injection molded. The current
circumferential design is very expensive to manufacture. The
two designs employed a 1.75" diaphragm-and-voice coil. Tests
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were performed on a typical exponential horn. The on-axis

response of the radial driver was equalized as flat as possible

(Altec 1620 1/3-octave equalizer) and then the circumferential

unit was substituted, using the same diaphragm and E.Q. settings.

Care was taken to keep diaphragm spacing, "h", the same. Also,

magnetic assemblies were selected for identical gap flux so that

only phase plug performance could be evaluated. These curves

are shown in Figure (20).

I i r_l i m i i i i i i i I I I I I I I I I I I I I I I I I I lB I I

Polenliomeler Range:. f)-C} . .dB Rectifier:._ __Lower Lira. Freq.: __Hz Wr. Speed: _.mm/see. Paper Spt

ioLt::l::t:sI: I1:*l_1_:k_:f:flll:X:I7_w[:_$1:[:_T]_'_:I_'$:!-_

iL I 1:[: 5tht:1  t51:t:,o _o .4. ,o 4°° _oo_.. ._o° ,o_,o ,ooo., ,ooo .ooo.soooo400°0,, , , '" . "

Mulltply Freq. Scale by Zero Level: (1612/2112)

Figure (20) - Actual Response of Drivers

(both with same E.Q.)

DISCUSSION

Actual performance is somewhat close to predicted, with a

final gain of about 8 dB at 20 kHz and something like a 1 dB

loss in the high mid-region (6-7 kHz). It seems as if the

entire analysis would be closer if it were lower in frequency,

i.e., 4=1 would occur at a lower frequency theoretically. This
means a shift of frequency by a factor of 1.2 lower. Also not

taken into consideration is the way the geometry of the phase

plug affects the breakup modes of the diaphragm. The radial

phase plug shown was designed to have a prime number of slits

(11) and, depending on the position of modes in the diaphragm

relative to the phase plug slits, flow may be affected in dif-

ferent ways. Obviously, an inclusion of this into the analysis

would be very difficult!

CONCLUSION

A phasing plug in a high frequency compression driver is modeled

as a two-pole low-pass filter, its resonant frequency being

determined by the mass and compliance of the air between the
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diaphragm and the phase plug. This model seems to be accurate

up to its resonant frequency. Above this, a model suggested

by Merhaut is used, which includes the higher-mode vibration

behavior of the phase plug air, and its frequency range seems
accurate to three times the first-mode resonance. This model

is used as a differential element for analysis of a radial-

slit phase plug, which is shown to be a relatively lower-Q

filter. Due to its "distributed" multi-path length geometry,

the radial phase plug exhibits a much smoother "spread-out"

response compared to a "conventional" circumferential design,

which is shown to noteh very severely, due to its single-path

geometry. For these reasons, however, a lumped-parameter model

for the radial designseems unattainable since its performance

is infinitely variable. This seems to make the radial design

more well-suited for extended-range response. Lastly, because

of its one-price castability, the radial design has a further

advantage in its ease and economy of manufacturability.

The Author wishes to thank Dr. Richard Small, Prof. Dean Karnopp

(U. C. Davis), John Gilliom (Spider), Jerry Siciliano (Altec)
and Mark Ureda (Altec) for their contributions to this work.
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Appendix (1)

A distributed spring-mass system in vibration can be modelled
as a discrete system by reasoning applied to the following
figures:

"; v(g)

(a) Cantilever Spring (b) Linear Vibration

///,'///

(c) Discrete Equivalent

Figure (21) - Distributed & Discrete Vibrating Systems

Both figures (a) and (b) have a linear velocity gradient with
Y,V (y). Each cross-section has an area (normal to "y")
whose value is "A" and a thickness dy. The material in each
has a mass density p. The spring constant (or rate) of both,
when forced in the direction of vibration is discrete; the
mass is not, and the effective mass is found as a percentage
of the total mass--by its contribution to the total kinetic
energy of the unit. This is found by integrating the kinetic
energies of all dy section.
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Appendix (1) Contd.

Y
V (y) = V_5%X _ (37)

_ _ V2 y2

_ 1 1 _ max pAdy (38)KE = o dKE = o 2 V2dm = _ o _2

1 2 pA_ 1
KE = 2 VMAX 3 = _ Me VMAX2 (39)

Where M is the effective mass. Since the totale

mass, MT, is:

MT = pA_ (40)

It takes no great mathematical wizard to conclude
that;

M e = 1/3 MT
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Appendix (2)

Taken directly from Beranek;

Figure (22) - Slit Resistance from Beranek

Beranek's equation (5.52) can be related to Figure (22);

Beranek's "t" = our "h"

Beranek's "w" = our "4"

Beranek's "l" = our "kD"

= 1.86 x 10-sqt/m2-sec

in which case our equation becomes;

12q _D _
Rp = h mechanicalMKS ohms (41)

Taking into account the (kD/h) acoustic transformer and

that this resistance is, in mobility, in common (thus in

parallel) with the phase plug mass and compliance volume

flow, we arrive at the following mobility electrical

phase plug resistance;

(SZ)2h_ (B_)2 h_
Rp = - ohms (42)

12q_D36 12n_D2S D

This resistance appears as viscous drag along the sides of the
air channel (between phaseplug and diaphragm) and "looks like"
a mobility resistor from U' to ground. On a typical 8_, high
efficiency driver, this calculates to about 260Q and is judged

insignificant relative to RAF which is about SQ.
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Appendix (3)

Proof: For equal ZD'S and total slit area, the maximum slit

width for circumferential and radial phase plugs are identical.

Analysis: Figure (19) shows radial and circumferential phase

plugs, where N is the number of channels and A is total area.

_ _
b_

W_

Figure (23) - Radial and Circumferential ..,'
Phase Plugs .-'

_a' z_rroIrr_ c_
2Nr, Ne.

for equal _D'S and areas,

,_rro_ Co

using (48) and (49) _0_= _.
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